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results further demonstrated the equivalent predictive power
obtained with the same-subject model, the cross-subject
model, and the cross-study model.

[0104] The Clarke EGA is also performed for each of the
three studies using the same-subject model predictions (sce-
nario I). The composite result of each analysis is plotted on a
separate graph (not shown). Of the 3,600 entries (400 data
pointsx9 subjects) for the iSense study, 3,564 points (99.0%)
lay in zone A, 35 in zone B, and 1 in zone D. Of the 7,200
entries (400x18) for the Guardian RT study, 7,150 points
(99.3%), 32 points, and 18 points lay in zones A, B, and D,
respectively. Similarly, of the 2,800 entries of the DexCom
study, 2,787 (99.5%), 12, and 1 lay in zones A, B, and D,
respectively. These results demonstrated the clinical utility of
the predictive models.

[0105] To verify that the employed datasets do not corre-
spond to well-treated diabetic patients with glucose levels
mostly within the euglycemic range and that the filtering
procedure does not over-smooth the raw data, the number of
hypo- and hyperglycemic episodes in the raw, smoothed, and
predicted data are calculated. A lower threshold of 3.9
mmol/1 (70 mg/dl) and an upper threshold of 10 mmol/1 (180
mg/dl) was adopted; and, an inter-episode separation of at
least 30 minutes and a minimum of 30 minutes (seven con-
secutive data points) outside the euglycemic range were
required to count the excursion as a hypo- or hyperglycemic
episode. FIG. 11 is a table illustrating the cumulative number
of hypo- and hyperglycemic episodes and related statistics
(averaged over the corresponding subjects) for the raw,
smoothed, and predicted data for each of the three studies.
The results confirmed that the subjects did exhibit glucose
excursions and that the filtering did not significantly
smoothed them out. Overall, the models correctly predicted
89 out of 93 hyperglycemic episodes and 20 out of 23
hypoglycemic episodes.

[0106] For instance, for the iSense study, the average mini-
mum glucose levels (in mmol/l) was 3.95, 4.38, and 4.28 for
the raw data, smoothed data, and predicted data, respectively.
The average maximum glucose levels (in mmol/l) were
15.81, 14.70, and 14.87 for the raw data, smoothed data, and
predicted data, respectively. The average mean glucose levels
(in mmol/l) were 8.72, 8.72, and 8.69 for the raw data,
smoothed data, and predicted data, respectively; and the aver-
age standard deviations were 2.61,2.52, and 2.55 for the raw
data, smoothed data, and predicted data, respectively. The
total number of hyperglycemic episodes were 25, 24, and 24
for the raw data, smoothed data, and predicted data, respec-
tively; and, the total number of hypoglycemic episodes were
4,3, and 3 for the raw data, smoothed data, and predicted data,
respectively.

[0107] The portability properties demonstrated by the
models herein are attributed to two factors: the conserved
nature of the frequency content in the glucose signal of dia-
betic patients and the properties of the modeling approach.
The dynamics in the blood glucose time-series signal of dia-
betic patients can be characterized by four distinct frequency
ranges. These different frequency ranges characterize differ-
ent physiologic mechanisms and are best described by the
periodicity of their oscillations. The highest frequency range,
with periods between 5 and 15 minutes, is generated by
pulsatile secretion of insulin. The second highest, ultradian
glucose oscillations, corresponds to periods between 60 and
120 minutes. Exogenous inputs, such as meals and insulin,
generate oscillations with periods between 150 and 500 min-

Jun. 30, 2011

utes; and, finally, circadian oscillations are responsible for the
low-frequency range, with periods longer than 700 minutes.
[0108] Analysis of the time-series glucose signals of all
subjects in the three studies supports these findings and shows
that the frequency content in the signals is conserved across
subjects. FIG. 12 is a graph illustrating the power spectrum
density profiles for each of the three studies, averaged over
the subjects in each study. While the amplitudes of the profiles
are different for each of the studies, the periodicity (i.e., the
location of the peaks on the x-axis) is conserved across the
studies. The conservation of biological rhythms, such as the
circadian rhythm, across species, or even kingdoms, is a
known phenomenon.

[0109] This similarity in the frequency content of the glu-
cose signals is exploited by the predictive AR models herein.
Periodic signals, like glucose concentration, are character-
ized by three parameters: amplitude, frequency, and phase of
the underlying oscillations. However, a property of AR mod-
els is their invariance with respect to a signal’s amplitude and
phase, and sole dependency on its frequency. The sequence of
the AR model coefficients captures and represents the fre-
quency content of a time-series signal. Therefore, the devel-
opment of the predictive AR models from signals with similar
frequency content produced similar (or portable) models,
regardless that different time-series signals recorded from
different subjects had different amplitudes and initial phases.
This invariance of the AR model coefficients to the glucose
signal’s amplitude and phase atfords model portability across
subjects with type 1 and type 2 diabetes. Type 1 diabetes
patients usually have larger glucose-level variations than type
2 patients. However, if these variations contain the same
frequency information, the predictive AR models herein are
portable across them. Moreover, because of the frequency-
dependent nature of the AR model coefficients, information
concerning exogenous inputs, such as meals and exercise, is
automatically incorporated into the models if this information
is present in the training data.

[0110] However, if some of the subjects from the training
data are nondiabetic and fasting, the models’ portability could
be jeopardized because the glucose dynamics are different in
this case. This is particularly relevant for the highest-fre-
quency component of the glucose time-series signal, i.e., the
shortest periods spanning between 5 and 15 minutes, because
while these periods are prominent in nondiabetic, fasting
individuals, they are absent in diabetic patients. In diabetic
patients, insulin-generating cells responsible for pulsatile
secretion of insulin are severely handicapped, essentially
eliminating the 5-15 minute periods from the glucose signals.
Moreover, the blood-to-interstitial transport acts as a low-
pass filter, reducing the high-frequency dynamics in the CGM
signals, which are further attenuated by the filtering proce-
dure utilized herein.

[0111] The filtering procedure, used to attenuate any
remaining high-frequency component in the signal to yield
consistent AR coefficients and robust models, does not sig-
nificantly impact the ability to capture hypo- and hypergly-
cemic episodes; and hence, the clinical usefulness of at least
one embodiment of the invention. FIG. 11 shows that the
predictive models herein correctly predicted 96% of the
hyperglycemic episodes and 87% of the hypoglycemic epi-
sodes present in the three studies.

[0112] Another contributing property for the predictive AR
model portability relates to the limits imposed on the model
coefficients by the constrained least squares method. Besides



